Polynomial Expressions and Functions

These notes are intended as a summary of section 1.1 (p. $2-6$) in your workbook. You should also read the section for more complete explanations and additional examples.

Division of a Polynomial by a Binomial

Use long division to determine each quotient. Verify the answer.

$$
2748 \div 13
$$

$$
4212 \div 27
$$

Long division can be used to divide a polynomial by a binomial. Since division by zero is not possible, assume that the divisor is never 0 .

For example, to divide $3 x^{2}-4 x+5$ by $x-2$:

$$
x - 2 \longdiv { 3 x ^ { 2 } - 4 x + 5 }
$$

Let's try a few more examples.

Divide $2 x^{3}-x^{2}-2 x+1$ by $x+1$:

$$
x + 1 \longdiv { 2 \mathrm { x } ^ { 3 } - x ^ { 2 } - 2 x + 1 }
$$

Divide $x^{2}+2 x+5$ by $x-1$:

$$
x - 1 \longdiv { x ^ { 2 } + 2 x + 5 }
$$

Note: Before dividing, we must write the polynomial and the binomial in descending order.

Example 1 (sidebar p. 3)

Divide: $2 x^{3}+5-2 x+3 x^{2}$ by $x-1$

Division Statements

A division statement relates the original polynomial and the divisor to the quotient and the remainder. It has the form:

$$
\text { Polynomial }=\text { Divisor } \times \text { Quotient }+ \text { Remainder }
$$

This is often written in function notation as:

$$
P(x)=(x-a) \cdot Q(x)+R
$$

For example, the division statement for Example 1 would be

$$
2 x^{3}+5-2 x+3 x^{2}=(x-1)\left(2 x^{2}+5 x+3\right)+8
$$

Let's go back and write division statements for all of our examples that we've done so far.

Note: Sometimes a polynomial will be missing terms that contain some power of the variable. For example, $-4 x^{4}+2 x^{2}-x-3$ has no x^{3} term. In such cases, we insert a term with a coefficient of zero (e.g. $0 x^{3}$) as a placeholder.

Example 2 (sidebar p. 5)

Divide: $3 x^{4}-x^{3}+3 x-20$ by $x+2$. Write the division statement.

Homework: \#3, 5-7 in the exercises (p. 7-12). Answers on p. 13.

